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Abstract-The boundary layer method proposed by Everstine and Pipkin for the analysis of
highly anisotropic materials, such as fibre-reinforced materials, in elastic plane strain is
developed and extended also to include plane stress. It is applied to problems of point forces
acting on half-planes, and to two crack problems. The boundary layer solutions are compared
with known exact solutions in anisotropic elasticity, and it is found that the boundary layer
theory gives good results for elastic constants typical of a carbon fibre reinforced resin.

1. INTRODUCTION

Materials such as resins reinforced by strong aligned fibres exhibit highly anisotropic
elastic behaviour in the sense that their elastic moduli for extension in the fibre direction
are frequently of the order of 50 or more times greater than their elastic moduli in transverse
extension or in shear. An idealization of this property is to assume that the material is
inextensible in the fibre direction, and a simple theory has been constructed on this basis[I-4].
A feature of solutions using this theory, which has been illustrated in many examples, is the
occurrence of singular fibres or sheets of fibres, which support finite forces, and consequently
infinite stress, and transmit force for large distances without attenuation. By considering
some simple but illuminating examples Everstine and Pipkin[5] showed that in plane
elasticity for a highly anisotropic but not inextensible material these singular fibres become
regions of stress concentration which attenuates slowly with distance along the fibre, and
provided estimates for the stress in and dimensions of these layers. Subsequently Everstine
and Pipkin[6] formulated a boundary layer analysis for highly anisotropic materials in
plane strain, and applied it to the deflection of a cantilever beam under end load.

The purpose of this paper is to further develop and apply this boundary layer theory
proposed by Everstine and Pipkin[6] and compare its predictions with some exact solutions
in anisotropic elasticity.

The essential theory of plane anisotropic elasticity is summarized in Section 2. Both plane
strain and plane stress are considered. The corresponding inextensible theory is outlined
in Section 3. Unlike some previous work, it is not necessarily assumed that the material is
incompressible as well as inextensible in the fibre direction. The boundary layer equations
are formulated in Section 4. The formulation differs a little from that of[6], but the end
results are essentially the same although the present theory includes plane stress as well as
plane strain problems. The problem reduces to the solution of Laplace's equation for the
two displacement components, in appropriately scaled coordinates.

The remainder of the paper is devoted to applications. Basic point force problems for
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(2.2)

the half-plane are solved in Section 5, and compared with known exact solutions. The prob
lem of a crack parallel to the fibres is shear is solved in Section 6. In Section 7 the boundary
layer solution is obtained for a crack normal to the fibre direction opened by internal
pressure. This solution is compared with the exact anisotropic elastic solution, and very
satisfactory agreement is obtained for elastic constants typical of a carbon fibre reinforced
resin.

2. PLANE PROBLEMS FOR TRANSVERSELY ISOTROPIC MATERIALS

The constitutive equation for a transversely isotropic linear elastic material whose
preferred direction is that of a unit vector a is

tij = AekkOjj + 2JlTeij + lX(akamekmOij + ekkaja)

+ 2(JlL - JlT)(ajak ekj + ajakeki) + fJakamekmaiaj' (2.1)

Here tij are components of stress, e jj components of infinitesimal strian, aj the components
of a, all referred to rectangular cartesian coordinates X j • The vector a may be a function of
position. Indices take the values I, 2, 3 and summation convention ill employed. The
coefficients A, JlT' JlL' IX, fJ are elastic constants with the dimensions of stress.

If a is chosen so that its components are (l, 0, 0), so that the preferred direction is every-
where that of the Xl axis, (2.1) become

t11 = (A. + 21X + 4JlL - 2JlT + fJ)e11 + (A + lX)e22 + (A + lX)e33 ,

t22 = (A + lX)e11 + (A. + 2JlT)e22 + Ae33,

t33 = (A + lX)e11 + Ae22 + (A. + 2JlT)e33,

t23 = 2JlT e23 ' t13 = 2JlLe13 , t12 = 2JlLe12 •

From these it is seen that JlT can be identified as the shear modulus in transverse shear
across the preferred direction, and JlL as the shear modulus in longitudinal shear in the
preferred direction. The other constants A., IX, fJ can also be related to more familiar quantities,
for from (2.2) it can be shown that

(A + JlT)fJ' - (A + 1X)2
E= ,

A + JlT

where

E' _ 4JlT[(A + JlT)fJ' - (A. + 1X)2]
- (A + 2JlT)fJ' - (A + 1X)2 '

, AfJ' - (A + 1X)2
v = ,

(A + 2JlT)fJ' - (A + 1X)2

fJ' = A + 21X + 4JlL - 2JlT + fJ·

(2.3)

(2.4)

Here E is the extensional modulus for uniaxial tension in the direction of a, v the corre
sponding Poisson's ratio, E' the extensional modulus for uniaxial tension in a direction
normal to IX, and v' is the ratio -e33/e22 for uniaxial tension in the X2 direction. The con
stants E, E', v, v' and G = JlL are those used by Everstine and Pipkin[5,6]; they differ from
those used by Lekhnitskii[7] by interchange of primed and unprimed quantities.

In plane strain in the (Xl' X 2) plane, e13 = e23 = e33 = 0, and (2.2) give
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Similarly in plane stress, t13 = t23 = t33 = 0,

t12 = 2JlLe12 •

Thus in either case the equations are of the form

1105

(2.6)

(2.7)

where L, M, N can be related to the elastic constants by comparison with (2.5) or (2.6) as
appropriate.

In considering plane problems the coordinates Xl' x 2 will be replaced by X, Y respectively.
The stress components in the (x, y) plane are then denoted by txx' tyy , t"y, and the corre
sponding strain components by ex:<, eyy , exy ' Components of displacement in the X and y
directions will be denoted u, v, so that

exx = au/ax,

In this notation (2.7) become

(2.8)

(2.9)

The trajectories of the vector a will, for convenience, be called fibres, and its direction the
fibre direction. The preferred direction is everywhere tangential to the fibres. In the present
case with a = (1,0,0), the fibres are all straight lines parallel to the x-axis. This terminology
is suggested by the possible application of the theory to materials reinforced with a family of
aligned fibres, but the theory of this section is applicable to any transversely isotropic linear
elastic material.

3. THE INEXTENSIBLE THEORY

The materials under consideration are ones which have (in an appropriate sense defined
below) a large modulus for extension in the fibre direction. A simple theory can be con
structed[3,4] by idealizing this property by making the assumption that the material is
inextensible in the fibre direction, so that

(3.1)

The normal stress component corresponding to the fibre direction is then an arbitrary
tension which is a reaction to the constraint of inextensibility, and the constitutive equation
takes the form

tij = Aekkbij + 2JlTeij + 2(JlL - JlT)(ajakekj + ajakekj) + Tajaj' (3.2)

where T represents the arbitrary fibre tension. Comparing (2.1) and (3.2), it is evident that
this inextensible theory requires the limit p~ 00.

If in addition the material is incompressible, then also

(3.3)
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the hydrostatic pressure becomes an arbitrary reaction to this constraint, and the constitutive
equation is

lij = -Pbij + 2JlTeij + 2(JlL - JlT)(aiakekj + ajakekJ + Taiaj, (3.4)

where p represents the hydrostatic pressure. Evidently (3.4) arises from (3.2) in the limit
2 --t 00. The theory then becomes that of the ideal fibre-reinforced solid described by Pipkin
and Rogers[l] and Spencer[2]. However, although incompressibility is often a valid approxi
mation to make when dealing with finite deformations of solids, it is less often so in small
deformation theories, and so the less restrictive assumption (3.2) is adopted here. Never
theless, many of the results will remain true in the limit 2 --t 00 of an incompressible material,
and it is also worth noting that in many problems in linear elasticity values of the quantities
of interest are not sensitive to the compressibility of the material. The simpler incompressible
theory is therefore of considerable value in certain cases.

For plane strain, and a = (I, 0, 0), (3.2) give

txx = T, tyy = (2 + 2JlT)eyy , tXY = 2JlLexy , (3.5)

and similarly, for plane stress, (3.2) give

41lT(2 + IlT)
Ixx = T, Iyy = A+ 2JlT eyy , tXY = 21lL exy ' (3.6)

In both (3.5) and (3.6) additional terms have, without loss of generality, been absorbed into
the arbitrary tension T. If the material is incompressible then 2 --t 00. Then in plane strain
eyy = 0, and (3.5) become

and T 1 and Tz are both arbitrary. These are also the appropriate equations for plane strain
of a material reinforced by two families of inextensible fibres[2,8]. In the case of plane
stress, however, incompressibility does not imply eyy = 0, and in the limit A--t 00 (3.6)
become

txx = T, (3.7)

Thus, as noted by England, Ferrier and Thomas[3], for either compressible plane strain,
or compressible or incompressible plane stress, the equations take the form

(3.8)

where

N = (41l~(: ~1l;T)
A+ 2JlT

4JlT

Since exx = ou/ox = 0, there follows

The equilibrium equations

(compressible plane strain),

(compressible plane stress),

(incompressible plane stress).

u =f(y).

(3.9)

(3.10)

otxy Olyy _ °
ax + ay - , (3.11)
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give, with (3.8) and (3.10)

aT [ "() a
2

V ] 0ax + Jh U Y + ax ay = ,

a2v a2v
ilL ax2 + N ay2 = O.

For convenience introduce a constant

and then v satisfies
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(3.12)

(3.13)

(3.14)

(3.15)
a2v 1 a2v
-+--=0ax2 c2 ay2 •

A number of solutions of these equations, as well as a more detailed derivation of them,
are given in[3]. In the incompressible limit for plane strain, but not for plane stress, c -+ O.
For c "# 0, it is convenient to introduce a new variable

e= x/c,
in terms of which (3.15) becomes

a2v a2v
ae + ay 2 =0,

so that v is a harmonic function of eand y.

(3.16)

(4.1)

4. BOUNDARY LAYER EQUATIONS

A feature of solutions of problems using the inextensible theory of the preceding section
is that they frequently predict the existence of singular sheets of fibres, which carry infinite
stress but finite force. This was first pointed out by Pipkin and Rogers[l] and has since been
demonstrated in numerous examples. These singular fibres may occur either adjacent to the
surface of a body or in its interior. In the case of incompressible plane strain it is also
possible for the normal curves, that is the orthogonal trajectories ofthe fibres, to be singular.
Everstine and Pipkin[5] demonstrated convincingly by considering some simple examples
that in reality these singular sheets of fibres represent narrow bands of intense stress con
centration. If I is a characteristic length of a problem, these bands have width of order
(IlL/E)1/21, and along them the stress decays in a length of order (IlL/E)-1 /21. The inextensible
theory corresponds to the limit IlL/E -+ O. Thus for IlL/E 4; 1 the singular fibres represent
boundary layers across which certain stress components vary rapidly, and Everstine and
Pipkin[5] pointed out that the equations are of a suitable form for the application of a
boundary layer or singular perturbation analysis. Subsequently[6] they developed such an
analysis and applied it to the problem of the deflection of a cantilever beam under end load.
The purpose of this paper is to give some further developments and applications of this
boundary layer theory.

Everstine and Pipkin[5] introduced the Airy stress function X which for anisotropic plane
elasticity satisfies the generalized biharmonic equation

f}4X a4X a4x
C f}x4 + B f}x2 ay 2 + A f}4y = 0.
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(4.2)

For the isotropic case A = -!B = C = 1. The inextensible theory arises in the limit AlB ---+ O.
We proceed somewhat differently directly from equations (2.9); the end result is effectively
the same. Substituting the stress components (2.9) in the equilibrium equations (3.11) gives

;Pu 02 V 02U
L ox2 + (M + ilL) oxoy + ilL oy2 = 0,

02V 02 U 02V

ilL ox2 + (M + ilL) oxoy + N oy2 = O.

Now introduce the notation

ilL 2
-=fL ' (4.3)

[the last of these is a repetition of (3.14)]. Then (2.9) may be written

txx 1 1
- = 2" exx + d 2 eyy ,
ilL f

and (4.2) become

tyy 1 1
-=d2eXX+2"eyy,
ilL C

(4.4)

(4.5)

In the limit of an inextensible compressible material p ---+ CI) while A, liT' ilL and IX remain
fixed. It follows from (2.4), (2.5) and (2.6) that in this limit, for either plane strain or plane
stress, L ---+ CI) with ilL, M and N held constant. It further follows from (4.3) that f ---+ 0,
with d and C constant. It is supposed for the present that f is a small but finite parameter,
corresponding to a material which is " almost inextensible". To illustrate how these assump
tions relate to certain real materials, we refer to measurements by Markham[l1] of the
elastic constants of a carbon fibre-expoxy resin composite. Markham obtains the following
values for the components cij of the stiffness matrix (with the 3 axis corresponding to the
fibre direction)

Cll = 10'57 x 109 Nm- 2
,

C13 = 4·37 x 109 Nm- 2
,

C33 = 241·71 x 109Nm- 2
,

C44 = ilL = 5·66 x 109 Nm- 2
,

C12 = 5·64 x 109Nm- 2 ,

C66 = liT = 2·46 x 109Nm- 2
•

The corresponding values of E, E', v (also quoted by Bishop[9]) and v' are

v = 0,27, v' = 0·53.

These give, for plane strain

L = C33 = 241·71 x 109Nm- 2
, M = C13 = 4·37 x 109Nm- 2

,

N = Cll = 10·57 x 109Nm- 2
,

and for plane stress

t The constants E and c differ slightly from the similarly denoted quantities in[61.
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L = (C11C33 - ci3)/C11 = 239·9 X 109Nm- 2,

M = C13(C11 - C12)/C12 = 2·04 x 109Nm- 2
,

N = (ci1 - ci2)/C11 = 7·56 x 109Nm- 2.

Then from (4.3) the values of the parameters £, C and dare
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Plane strain.
Plane stress.

£2 = 0'023,
£2 = 0'024,

c2 = 0'54,
c2 = 0'75,

d 2 = 1·29.
d 2 = 2·76.

Thus for this material it is not unreasonable to seek approximations based on the assumption
that £ is small, while C and d are of order one, although it will be shown below that less
restrictive conditions on cand d will suffice.

In plane strain (but not in plane stress) if the material is incompressible as well as in
extensible, then c = O. Correspondingly for an "almost incompressible" material in plane
strain c, as well as £, is a small parameter. For the present we place no restrictions on the
magnitude of c.

In the neighbourhood of a fibre which according to the inextensible theory is a singular
fibre, quantities may vary rapidly in the y-direction, which is normal to the fibres. Following
usual boundary-layer theory procedures, to accommodate such variations we "stretch" the
y-coordinate, the appropriate scaling factor being £. Hence we substitute

Equations (4.4) and (4.5) then become

y = Ell· (4.6)

(4.8)

(4.7)

(4.9)

txx 1 8u 1 8v
-=--+--,
ilL £2 8x £d 2 8'1

tyy 1 8u 1 8v
-=--+--,
ilL d 2 8x £c2 8'1

tXY 1 8u 8v
- =--+-,
ilL £ 8'1 8x

1 8
2
u 1 ( 1) 8

2
v 1 8

2
u

? 8x2 + ~ 1 + d 2 8x 8'1 + ? 8'12 = 0,

8
2
v 1 ( 1) 8

2
u 1 8

2
v-+- 1+- --+--=0

8x2 £ d 2 8x8'1 £2C28'12 .

Everstine and Pipkin[6] show that in the boundary layer u/v is of order £, but (8u/8x)/
(8v/8'1) is of order l/E. Hence the terms of lowest order in £ in (4.8) and (4.9) give

(4.10)

provided that

where p < 1, q > - 1, p - q < 1, as £ -> O.

In particular, these restrictions are satisfied if p = 0, so that d = 0(1) and q = 0 or 1, so that
C = 0(1) or 0(£).
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From (4.10) it follows that, to first order, in the boundary layer u is a harmonic function
of x and 1'/, and v has the form

v = g(x) + '7h(x). (4.11)

It is interesting to note the duality between (4.10) and (4.11) on the one hand, and (3.10)
and (3.16) of the inextensible theory on the other. In the inextensible theory u depends only
on y, and v is a harmonic function of ~ = x/c and y.

For small values of f the inextensible theory gives the first approximation to the solution
of a given suitably posed problem except in the neighbourhood of fibres which it predicts
to be singular. In the neighbourhood of a fibre which in the inextensible theory is singular
(the boundary layer region) the boundary layer equations (4.10) yield the first approximation
to the solution.

Now consider the boundary conditions which solutions of the boundary layer equations
must satisfy. Two main cases arise, according to whether the boundary layer is adjacent to a
boundary surface of the body or in its interior. Suppose first that the layer is adjacent to a
surface; for definiteness this is taken to be y = 0 (or '7 = 0) and the material occupies part
or all of the region y > O. Typical conditions on the surface are that either (i) u and v are
specified on y = 0, or (ii) tyy and tXY are specified on y = O.

As '7 --+ 00, the boundary layer solution must match the solution in the exterior region as
y --+ O. Consider first the displacement component v. The inextensible solution yields values
of v which satisfy (3.15) and also any boundary conditions on y = 0 for v and ov/oy. Suppose
that as y --+ 0 in the exterior region

v --+ G(x), ov/oy --+ H(x). (4.12)

In the boundary layer region v is of the form (4.11). Ifnow g(x) and h(x) are chosen so that

g(x) = G(x), h(x) = fH(x), (4.13)

then boundary conditions on v or ov/oy are satisfied on y = 0 and, as regards v, the boundary
layer and exterior solutions coincide in the neighbourhood of y = O. Thus v and its first
derivatives are continuous through the boundary layer.

For the displacement component u, the exterior solution gives, from (3.10), u --+1(0) as
y --+ O. Hence for the boundary layer solution it is required that

u --+1(0) as '7 --+ 00,

where1(0) is given by the exterior solution. On the boundary y = 0 typically either u is given
or tXY is given. Since v, and hence ov/ox is known, specifying tXY is equivalent to specifying
ou/oy on y = O. Thus typical boundary conditions are that u or ou/O'7 is specified on '7 = 0
and as 1'/ --+ 00 ; these of course are boundary conditions typically encountered in the solution
of Laplace's equation. To complete the boundary conditions for u it is necessary to state
conditions on two curves which close the boundary of the region in which the boundary
layer solution is required. In a finite body these intersect y = 0 at finite values of x. In an
infinite body conditions are specified as x --+ ± 00. Various possibilities arise; no attempt is
made to enumerate them, but some are illustrated by examples in the following sections.

Now suppose that the boundary layer is in the interior of a body; for definiteness let it
again be in the neighbourhood of y = 0, with both sides of y = 0 now occupied by the
material. The inextensible solution will yield values of v in y > 0 and y < 0; these will be
such that v and ov/oy are continuous. Thus
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v -+ G(X), ov/oy -+ H(x) (4.14)

Consequently if v is again chosen in the boundary layer region to be

v = G(x) + £I}H(x), (4.15)

the continuity conditions for v and tyy are satisfied. In the inextensible solution ou/oy may
be discontinuous across y = O. Let the exterior solutions in y > 0 ; and y < 0 give

u-+f+(O) as y-+O+, u-+f-(O) as y-+O-.

Then in the boundary layer u must satisfy

u -+f+(O) as 1'[ -+ 00, U -+f-(O) as I} -+ - 00.

(4.16)

(4.17)

As before, further conditions are required on the remaining boundaries ofthe boundary layer
region.

Since, in the boundary layer, u is a harmonic function of the variables x and I}, so also
are ou/ox and ou/ol} harmonic functions of x and 1'[. It often proves convenient to formulate
problems in terms of one of these derivatives of u rather than of u itself. The boundary
conditions for au/ox and oU/01'[ are analogous to those for u.

It is possible to formulate higher order approximations, in both the exterior and boundary
layer regions. However it seems likely that when the first order approximations described
above are inadequate it would be simpler to return to the exact equations rather than to use
such higher approximations.

5. POINT FORCE PROBLEMS FOR THE HALF-PLANE

To illustrate the theory in some problems in which comparisons can be made with exact
solutions several problems of point forces applied to the surface of a half-plane are investi
gated in this section.

Consider first the half-plane x > 0 with the fibres y = constant normal to the surface
x = 0, and suppose a point force of magnitude X acts on the surface in the positive x direction
at the origin. The inextensible theory gives the trivial solution

u 0, v =0, tyy = 0, (5.1)

Thus the fibre y 0 carries the force X, and has infinite stress, and so it is the centre of a
boundary layer in the interior of the material. Within this boundary layer v = 0, as given by
the inextensible solution, and u satisfies (4.10)

02U a2u
ox2 + 01'[2 = O. (5.2)

On the surface x = 0

and so, from (4.7)

tXY = 0, (5.3)

au X
- = -£ - 0(1'[),
ax ilL

au
-=001'[ , on x =0. (5.4)

It is also required that txx and t XY tend to the values given by (5.1) as I} -+ ± 00, which with
(4.7) give
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ou
--0
OX '

ou -0
017

as 17 - ±OO.

It is further assumed that the stress components tend to zero as x - 00, so that

OU
--0ox ' as x- 00.

It is most convenient to work in terms of ou/ox, for which the required solution is

OU fX X

ox - np.L (x2 + 172) •
(5.5)

It then readily follows that

OU -fX 17

017 = np.L (x2 + tJ2)'

-x x
txx =~ (x2 + 172) ,

fX X X tJ
t - - - t = - - (5.6)
YY - d 2n (x2 + 17 2)' xy n (x2 + 172)

The resultant force in the x direction transmitted across a section x = constant is

00 00 X[ 17]00- J txx dy = -fJ txx dl7 = - tan- 1
- = X,

-00 -00 n x -00

(5.7)tee tre 0,

so that the boundary layer carries the same force as the singular fibre y 0 in the inextensib1e
theory.

For this problem there exists a well-known solution of the exact equations (2.9) of
anisotropic plane elasticity. This is most conveniently taken in the form used by Everstine
and Pipkin[5], which is

X ft(l + f e f t) cos 0
trr = - nr (cos2 0 + f/ sin2 O)(sin2 0 + f/ cos2 0)'

(5.8)

where x = r cos 0, y = r sin 0, trr , tee, tre are stress components referred to (r, 0) coordinates,
and in the present notation the parameters f t and f e introduced by Everstine and Pipkin are
such that f t - 2 and f e

2 are the larger and smaller roots A of the equation

Jl,z (2 1 1) 1
c2 + d2 + d4 - f2

C
2 A+ f2 = O.

Everstine and Pipkin showed that the exact solution (5.7) tends to the inextensible theory
solution (5.1) in the limit f t - O. It is also evident, on setting 17 = Y/f, that the boundary
layer solution (5.6) tends to (5.1) as f -? O. To complete the comparison it is necessary to
compare the boundary layer solution with the exact solution. The difference between the two
is greatest on the axis of symmetry Y 0 (or 0 = 0) where the boundary layer solution (5.6)
gives

X
t =-
xx fnx

(5.9)

and the exact solution (5.7) gives
(l + feft) X

trr = txx = - .
ftnx

(5.10)
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Thus the boundary layer solution replaces the exact coefficient (1 + EeEt)IEt by liE. From
(5.8) it can readily be shown that

(5.11)

and so the approximation amounts essentially to neglecting E in comparison to unity.
Using the values of the elastic constants for a carbon fibre-epoxy composite measured by
Markham[ll] and quoted in Section 4, Bishop[9] obtained, for plane stress Et = 0·157 and
Ee = 0·883. With the same elastic constants E = 0'155 and c = 0'874. Thus the error in (5.9)
in this case arises almost entirely from omitting the term EeEt in the numerator of (5.10),
and in magnitude is about 14 per cent.

From (5.5) and (5.6) the displacement component u is, except for a constant

(5.12)

The logarithmic singularity in u at the origin is present also in the exact solution, so its
presence in the boundary layer solution does not give rise to concern.

A point force acting on the boundary x = °in the y-direction does not lead to singular
fibres in the inextensible theory, and so no boundary layers are to be expected in this case.

Now consider point forces applied to the half-plane y > °with the fibres again parallel
to the x-axis. Suppose first that a point force X acts at the origin in the positive x-direction.
The inextensible theory gives the solution

txx = -tXb(y) (x> 0), txx = tXb(y) (x < 0).

u =0, v =0, txy = 0, tyy = 0,
(5.13)

It can be verified that in this case also the solution (5.6) of the boundary layer equations
satisfies all the conditions of the problem. Also, (5.7) is again the exact solution. The
discussion of these solutions therefore applies also to this problem.

Of more interest is the case in which a point force Y acts at the origin in the positive
y-direction. The inextensible solution was given by England, Ferrier and Thomas[3] and is

(5.14)

cY x
tXY = - - (2 2 2) H(y + 0),

1t X +c Y

where H(y + 0) is the Heaviside step function, equal to one when y > °and to zero when
y ~ 0. The edge fibre y = °is a singular fibre.

The expression for v holds for all y > 0, including the boundary layer. Since tXY =°on
y = 0, we require

ou ov
-=--oy ox on y = 0.
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From (5.14), since y = f11, this gives

(5.15)on 11 = O.
OU fCY

01'/ 1!f.1LX

This is one boundary condition for the boundary layer. In order to match the boundary
layer solution with the inextensible solution (5.14) it is also necessary that

OU
--+0
011

The solution of (5.2) subject to (5.15) and (5.16) is

(5.16)

OU fCY x
011 = 1!f.1L (x 2 + 1'/2) •

Consequently the boundary layer solution is

(5.17)

U
fC Y -1 11--tan -,
1!/lL x

cY 11

- ~ (x2 + 112)'

(5.18)

with v and t yy given by (5.14).
The exact solution to this problem is obtained from (5.7) by interchanging f c and f"

replacing Xby Yand setting x = r sin 8, y = r cos 8. This gives in the neighbourhood of the
singular fibre y = 0

which, after making use of (5.11), agrees with the expression for txx given in (5.18) to first
order in E. Similarly, on the axis of symmetry x = 0, the exact solution gives

Y(l+
t = - - -'-----::.....:.;.
yy 1!y f

c

which agrees with the value given by (5.14) to first order in E.

Various other point force problems can be dealt with in a similar manner, such as those
of point forces acting in the interior of the whole plane, the half-plane x > 0, the half-plane
y > 0, or at the surface of or in the interior of an infinite strip. Many other problems can
then be solved by superpositions of these basic point force solutions, although this may not
necessarily be the easiest way to proceed in a given problem.

6. A CRACK PARALLEL TO THE FIBRES IN SHEAR

Consider an infinite plane region containing fibres parallel to the x-axis. A crack extends
along the x-axis y °from x = -a to x = a, and its surface is free from traction. As
x 2 + y2 -+ 00 the state of stress and deformation tends to one of simple shear

U = ySIf.1L, v =0, txx = tyy = O.
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If a uniform displacement u = -yS/PL' with the corresponding stress tXY = -S, is super
posed on this deformation, then the boundary conditions become

tXY = -So tyy O.
u. v. txx • tyy , txy -+0

y = 0, - a < x < a.
as x 2 + y2 -+ 00.

(6.1)

It is clearly sufficient to solve this modified problem. The original problem is then solved
by superimposing a uniform shear stress and strain on the solution of the modified problem.

The problem is symmetrical about y = O. so it is sufficient to consider the region y ~ O.
The solution of the equations of the inextensible theory which satisfies (6.1) is one of zero
stress and displacement everywhere except on the fibre y = 0, -a < x < a. This fibre is
singular, carrying a tensile force - Sx (with corresponding tensile stress - Sx <5(y» and shear
stress - S. Consequently there is a boundary layer in the vicinity of this fibre segment.

The solution v = 0 extends through the boundary layer. Hence the condition tXY = - Son
y = O. Ix I < a. reduces to

ou S
or = -f-.

OrJ ilL
y=O. Ixl <a. (6.2)

On the remainder of the line y = 0, by symmetry

u =0, y =0, Ixl >a. (6.3)

It is also required that

u-+o, (6.4)

Thus the boundary layer problem reduces to solving Laplace's equation (4.10) subject to
(6.2), (6.3) and (6.4). The solution is known, and can be expressed in various forms, one of
which is

(6.5)

where

(6.6)

(6.7)lxl<a.y=o,

The stress components can be obtained by substituting (6.5) into (4.7). The component of
greatest interest is txx on the surface y 0, Ixl < a. From (6.5)

S
u = f - (a2 _ X 2)1/2,

PL

Hence, from (4.7)

S x
t xx = - ~ (a2 _ X 2)1/2' y =0, jxl<a. (6.8)

At x ±a, txx has singularities of the form often encountered in elastic crack problems.
In the neighbourhood of the crack tip (a, 0), P ~ a, <P ~ 0, P2 ~ la, <P2 ~ 0, and

u ~ fS {(2apl)1/2 sin t<Pl - 11}. (6.9)
PL
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The corresponding stress components in the vicinity of the crack tip are

(6.10)

tyy = 0,txx = - ~ (2:J1/2 sin t¢l'

txy = S{(2:J1/2 cos 1¢1 - I}.
The solution to the original problem of the crack subject to uniform shear stress at

infinity is obtained by superimposing on this solution a uniform stress tXY S and a dis
placement u = SylJ1.L •

7. CRACK NORMAL TO THE FIBRES UNDER INTERNAL PRESSURE

Suppose an infinite plane region, with fibres again parallel to the x-axis, contains a crack
lying along the y-axis from y = -a to y a. No shear traction is applied to the crack
surface and, in the first instance it is assumed that the surface is subjected to a prescribed
normal displacement, so that the boundary conditions are

u =f(y) on x = 0, Iyl <a. (7.1)

In plane strain of an ideal fibre-reinforced material, problems of this kind are dis
cussed by England and Rogers[lO]. For continuity of displacement, it is necessary that
f(a) = f( -a) = O. For simplicity, it is assumed that f is an even function of y. Since the
configuration is symmetrical, it is sufficient to consider the region x ~ O.

The inextensible solution gives first

u =f(y),
u=O

Iyl<a,
Iyl>a, (7.2)

throughout the region. In the inextensible solution v must now be chosen to satisfy the
condition tXY = 0 on x = 0, for - 00 < y < 00. With (7.2) this means

:: = -f'(y),

ov
ox =0,

Iyl<a.

Iyl>a.
(7.3)

The solution of (3.15) which satisfies these, with ovlox -+ 0 as x2+ y2 -+ 00, is

ov 1 fa If'(y')dy'
ox = - -; -ae + (y - y')2 .

For example, if the crack has a parabolic profile

fey) = Uo (1 -~:),

(7.4)

(7.5)

then (7.4) gives

ov 2Uo [ {_ly-a _ly+a} 1):1 {e+(y-a)2}]
T = -2 - Y tan -):- - tan -):- + 2'0 og):2 ( )2'
ux na '0 '0 '0 + Y + a

(7.6)
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(7.7)

However, an explicit knowledge of v is not necessary in order to find the boundary layer
solution,

Still within the inextensible solution, the stress components are given by

tyy = Nov/oy,

tXy=JlLov/ox, Iyl>a,

tXY = JlL(f'(y) + OV/Ox), Iyl < a,

txx = F(y) - f(otXY/OY) dx.

The arbitrary function F(y) can be chosen to satisfy a boundary condition on txx ' We
observe, however, that iff"(y) =1= °and F(y) is bounded, then Itxx I -+ 00 as x -+ 00 in Iy I< a,
so that, as noted in[3], there are difficulties associated with applying the inextensible theory
to infinite regions. We return to these later. Since, whenf'(a) =1= 0, t,., is discontinuous on
y = ±a, the fibres y = ±aare singular, and carry a force

T = To + JlLxf'(y). (7.8)

(7.9)

as '11 -l> 00,

as tTl -l> - 00,

Observe again that ITI -+ 00 as x -l> 00.

Now consider the boundary layer solution in the vicinity of y = a. From (7.7) it follows
that in the boundary layer there is required a solution of (4.10) in x ~ 0 which satisfies

OU -l> f'(a) ,
oy

OU
-l> 0,

oy

where for convenience we use tTl = (y - a)/£ = tT - ale as an independent variable. In
addition, the symmetry of the configuration requires that

u 0, when x =0, (7.10)

and for u to have its prescribed value on x = 0 for tTl < 0 in the neighbourhood of y = a,
it is necessary that

u =E11d'(a), when x =0, tTl < O. (7.11)

The required solution is

OU (1 1 _1 111) ,- = E - - - tan - f (a)
0111 2 1t x

(7.12)

or

(7.13)U = E (-21 tTl - ~ III tan- 1 III +~x log (x2 + tT D+ CX)f'(a),
1t x 21t

where C is a constant which can be chosen to satisfy an additional boundary condition.
The stress components are determined from (7.4) and (7.13), but details are omitted for
reasons given below.

There are two difficulties associated with this solution. The first is that the boundary
layers increase in width with increasing distance from the crack tips, and the two boundary
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(7.14)

layers corresponding to the singular fibres y = a and y = -a begin to interact at distances
of order alE from the crack tips. Hence the solution becomes invalid at such distances.

The second problem is associated with the assumption that the elastic region is infinite.
Suppose for definiteness that the crack is opened by internal pressure, with zero traction on a
boundary at large distance, of order I, from the crack tip; this can be converted to the prob
lem of a crack opened by traction applied to the outer boundary in the usual way. Then from
(7.7) the pressure required to open the crack is of order -f.1.Llf"(y), and tends to infinity as
1-+ 00. On the one hand it is necessary for Iia to be large in order that the solution for v and
the boundary layer solution for u shall be valid; on the other hand, if I is large, then txx is
large in magnitude for Iyl <a and small values of x. But if Itxxl is sufficiently large then
iJuliJx is not small even if Eis small, and the assumption on which the inextensible theory
is based becomes invalid.

It is possible to resolve these difficulties and produce a uniformly valid approximate
solution in the following way. Near the crack Itxxl is large and iJ1uliJx1 is not necessarily
negligible compared to iJ1ulo112

• On the other hand olV/oxiJ11 remains small. Hence in the
exact relation (4.8), the term in olvloxo11 maybe neglected but the term in olulox1 should be
retained. This gives the boundary layer equation (4.10). At large distances from the crack,
as txx -+ 0, the term 01U/OX1 is small compared to o2uI011 2. However, there is no loss in
retaining this term, even though it has little effect on the solution. Hence, in order to have
the same equation for u throughout the plane, the approximate equation

02U 02U
-+-=0
iJx2 0112

is adopted everywhere.
With this formulation, the boundary conditions for u (with y = (11) are

u =0,
u = f(E11),

ou/ox -+ 0,

x=o,
x=o,

oU/011 -+ 0,

Iyl > a, 1111> alE,
Iyl < a, 1111 < alE,
x 2 + 11 2

-+ 00.

(7.15)

(7.16)

The solution of (7.14) which satisfies these is

u = ~{Ie 2xf(E11') d'1: 2'

n -ale X + (11 - '1 )

SO that if, for example, the crack has the parabolic profile (7.5)

Uo [{ E2(112-X2)}{ _l11+E-la _11J- E- 1a}
U = - 1 - tan - tan

n ~ x x

E2IJX {X2 + (1] - E-
1
a)2} 2EX]--log -- .

a2 x2 + (1] + E la)2 a2

By expandingf(EIJ) about y = EIJ = a, it can be shown after a little manipulation that if
'1 ~ alE, x ~ alE, then to first order in Ethe expression for iJulo'1.given by (7.16) reduces to
(7.12). Thus the two methods of approximation are equivalent within the boundary layer
region.

When the problem is formulated in this way it becomes straightforward to deal with the
more realistic problem in which the pressure, rather than the normal displacement, is
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specified on the surface of the crack. Suppose a pressure p(y) is applied to the surface, so
that txx = - p(y) on x = 0, Iy! < a. It follows from (4.7) that

1 au 1 at, p(y)
-2-+-2-= --, x=o, Iyl<a. (7.17)
£ ax d oy ilL

It is consistent with the boundary layer approximation to neglect £2 0V/oy compared to
d 2 au!ox (the validity of this can be verified a posteriori), and so the boundary conditions for
u become

x =0,

x=o,
au £2
-= - -p(y),
ax ilL

u =0,

Iyl <a,

jyl >a.

(7.18)

We consider the case in which the crack is opened by a uniform internal pressure, and
p(y) = Po, where Po is constant. Then the solution of (7.14) subject to (7.18), with au/ox and
ou/or, -+ 0 as Xl + tT2 -+ 00 is

2

U= - £ Po {x - (r1r2)1/2 cos 1(01 + (2)}'
ilL

(7.19)

where

x + i(11- £-1a) = , l ei/h,

x + i(tT + €-1a) = r2 e ilJ
,.

(7.20)

(7.21)

(7.22)Iyj <a,x =0,

On x = 0, Iyl < a, (7.19) gives
2

U= £ Po (£-2a2 _ r,2)1/2 = €Po (~ _ y2)1!2
ilL ilL

so that the crack has the characteristic elliptical shape. From (7.21)

OU = _ €PoY
oy IlL(a2 _ y2)1 /2 '

(7.23)
Iyl <a,x =0,

Iyl>a.x =0,av -0
ax - ,

and so, from (7.3), the boundary conditions for v are

OV €PoY
ax = IlL(a2 _ y2)1 /2'

The solution of (3.16) which satisfies (7.23) together with the symmetry condition v = 0
on y = 0 and with ov!oy -+ 0 as x2 + y2 -+ 00 is

(7.24)

where

~ + iCy - a) = Sleil//t,

~ + iCy + a) = S2eil/t,.
(7.25)
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It can now be verified that av/iJy is of order I: times £-2 iJujiJx, so it is justified to neglect the
term in avloy in (7.17).

From (7.19) and (7.24) there follows

(7.26)

which gives the stress components, to leading order in (;

(7.27)

The quantities of most interest in this problem are probably the stress components in the
immediate vicinity of the tips of the crack. Let r, ebe polar co-ordinates with origin at the
crack tip x = 0, y = 0, so that

x + iCY - 0) =re iO
•

Then from (7.20) and (7.25)

(7.28)

r1
2 = r 2(cos2 e+ (-2 sin2 0),

812 =r2
( c- 2 cos2 0 + sin2 0),

and, for ria ~ 1,

tan 01 = £-1 tan 0,
tan t/Jl = c tan 0,

(7.29)

82 ~ 2a, (7.30)

Hence for rl/a ~ 1, (7.27) are, approximately

(
a)1/2 COS(tOl - in)

txx = -Po +Po 2r (102 cos2 () + sin2 0)1./4'

€ I: (a )1/2 COSHt/J1 - in)
tyy = - ~Po + ~Po 2r (c 2 cos2 (J + sin2 0)1/4' (7.31)

(
a)I/2{ sin(WI - in) sinHt/J1 - !n) }

tXY = £Po 2r (£2 cos2 () + sin2 8)1/4 - (c- 2 cos2e+ sin28)1/4 .
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The variation of the stress components Ixx and Ixy (Iyy is ofless interest) with () is shown in
Figs 1 and 2 for the material constants given by Markham[ll] for a typical carbon fibre-
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Fig. 1. Shows the variation of txx with the polar angle 8 from the crack tip. The crack lies on
x = 0, ly I< a; x + i(y - a) = r exp(iB) and Po is the pressure applied to the crack surface.
The broken line shows the exact solution and the solid line the boundary layer solution.

Elastic constants for a carbon-fibre reinforced epoxy resin.
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Fig. 2. Shows the variation of tXY with 8. Notation as for Fig. 1.

epoxy composite, which give

£=0'155, c =0'874. (7.32)

The exact solution to this problem is also known (Bishop[9] gives extensive numerical
results and references to original papers). In the neighbourhood of the crack tip, rIa ~ 1,
the results analogous to (7.31) given by the exact solution are
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Po (a )1/2 { cos(!y - in) cos(115 - in) }
t = -Po + - - f f ,
xx 1 _ fcf t 2r (f; cos2 8 + sin2 8)1/4 c t (fc 2 cos2 8 + sin2 8)1/4

f t ftPo (a)1/2{ ftCOS(!y - in) cos(t15 - in) }
tyy = - ~ Po - 1 _ fcft 2r (ft

2 cos2 8 + sin2 8)1/4 - fc(fc 2 cos2 8 + sin2 8)1/4 ,(7.33)

I = ftPO (!!.-)1/2 { sin(!y - in) _ sin(t15 - in) }
xy 1 _ fcf t 2r (f/ cos2 8 + sin2 8)1/4 (fc 2 cos2 8 + sin2 8)1/4 '

where

tan y = f t-I tan 8, tan 15 = fc tan 8. (7.34)

By using (5.11) it can be verified that (7.33) reduce to (7.31) to leading order in f as f --+ O.
The values of lxx and IXY given by (7.33) are also shown in Figs. 1 and 2 for the values

f t = 0'157, f c = 0'883,

which follow from the elastic constants given by Bishop[9] and Markham[l I].
On comparing (7.31) and (7.33) it can be seen that the boundary layer approximation

involves replacing f t and fc by f and c respectively, and omitting certain terms. For the
constants used here, the substitution of f and c for f t and fc has very little effect (at most
2 per cent) on the numerical values of the stress components, and the discrepancy between
the exact and approximate solutions results from the omission of terms of order f compared
to one. For IXY' the approximation is essentially to replace the multiplier ft/(I - fcf t) in
(7.33) by f in (7.31); for the constants used this means the boundary layer theory under
estimates the magnitude of IXY by about 14 per cent. For lxx there are two effects; in
the approximation the last term (with the factor fcf t) in (7.33) is omitted, and the factor
(I - fcft)-I in (7.33) is replaced by one in (7.31). These two errors tend to cancel,
leaving an overall error of less than 14 per cent. These errors would of course be less if a
smaller value of f had been chosen.

This problem may be regarded as a stringent test of the boundary layer theory, for it
involves a complicated singularity at the crack tip in which IXY has an infinite discontinuity.
In these circumstances the agreement between exact and boundary layer solutions, for a
value of f which is not very small, is considered to be very satisfactory.

8. DISCUSSION

As pointed out by Everstine and Pipkin[6] the boundary layer analysis offers a theory
intermediate in difficulty between the simple inextensible theory and the exact anisotropic
theory. The examples discussed in this paper are ones for which solutions to the full aniso
tropic problem are available; they were deliberately so chosen in order to enable comparisons
with the exact theory to be made.

For problems in which an exact solution of the anisotropic theory is not available or
readily obtained, the boundary layer approach seems to offer a number of advantages
(always provided, of course, that the parameter f is sufficiently small). It requires only
solutions of Laplace's equation, and it appears that in many cases familiar standard solutions
of this equation will suffice. It is often possible to analyse the stress and deformation in the
boundary layer without requiring a complete solution elsewhere. For example, to find the
boundary layer displacement u, given by (7.13), in the problem of a crack opened by internal
pressure, it is only necessary to know the slopef'(a) of the crack surface near the tip. Since
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the boundary layers are usually the regions of greatest stress, it is often sufficient to be able
to analyse these regions. For problems which require numerical solutions, the solution of
Laplace's equation is a simpler proposition than that of the generalized biharmonic
equation, and the coordinate scaling introduced in the boundary layer analysis avoids the
appearance of large stress and displacement gradients which might cause difficulty and loss
of accuracy in numerical solution of the exact equations.

Of course the inextensible theory is even easier to apply and this, together with the order
of magnitude estimates given by Everstine and Pipkin[5], gives adequate information for
many applications.
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A6crpaKT - Orrpe,o:eJIJleTCli ,o:JIli 3a,o:a'lH rrJIOCKoil: ,o:el\!opMal\HH MeTO,o: rrOrpaHH'lHOrO CJIOll,
rrpe,o:JIOlKeHHblil: 3BepCTaHHOM H IIHHHKHHoM ,o:JIli aHaJIH3a BbICOKO aHH30TpOIIHbIX MaTepHa
JIOB, TaKHX KaK MaTepHaJIbI YCHJIeHHble BOJIOKHaMH. ,L(aJIeeJI 0606Il\aeTCli 3TOT MeTO,o:, C
3aKJIIO'leHHlI, TaKlKe, rrJIOCKOrO HarrplilKeHHoro COCTOllHHlI. MeTo,o: rrpHMeHlleTcli K 3a,o:a'laM
cocpe,o:oTO'leHHbIX yCHJIHil:, ,o:eil:cTBYIOIl\HX Ha rronyrrJIOCKOCTlIX, HK3a,o:a'laM ,o:ByX TpeIl\HH. Cpa
BHHBaIOTCli pemeHHlI rrOrpaHH'lHOrO CJIOli Cxopomo H3BeCTHbIMH pemeHHlIMH BpaMKax TeopHH
yrrpyrocTH aHH30TpoIIHoro TeJIa. HaxO,o:HTClI, 'ITO TeopHli rrorpaHH'lHoro CJIOli ,o:aeT Ha,o:JIe
lKaIl\He pe3YJIbTaTbI ,o:JIli yrrpyrHx rroCTollHHbIX, THrra yroJIbHOil: CMOJIbI, YCHJIeHHoil: BOJIOKHaMH.


